

Fairway Forward Helsinki 20.12.2019

Håkan Enlund

Innovations – Presentation Content

- 1. Innovations a Shipbuilder's Perspective
- 2. State of the Art in Ferry System Complexity
- 3. Ferry and Technology References
- 4. Energy Sources and Fuel Alternatives Power Generation
- 5. Integrated Automation and Navigation Systems
- 6. Interface Testing and System Simulation
- 7. Technology and Innovation Interaction
- 8. Intelligent Shipbuilding Conclusions

Industrial Innovations – a Shipbuilder's Perspective

- Energy Sources Realistic Fuel Alternatives
 - "Post LNG" Sources with Applicable High Energy Density
 - Environmental True Footprint
- Power Management in Autonomous Ships
 - Reliability with Sensors, Multiplied Control Units and Software
- Integration of Complex Systems Big Data enter Ferries
 - Lack of Interface Standards or too many Protocols?
 - Open source Interfaces a Way to prevent dictated Monopoly
- The Ferries are becoming DATA PLATFORMS
 - Do we need an "fOS" ferry Operating System

Trends

In shipping

CONSTRUCTIONS

Newbuilding 6002 for Kvarken Link – State of the Art

TECHNOLOGY

- Dual Fuel with LNG as primary energy source
 - Possibility to use bio-LNG
- Electric Propulsion Drive with Azimuth Thruster Units
- Battery Power for Port entry/departure, Peak Shaving, Hotel Load and Boost Power
- Energy recovery and Environmental footprint in focus

CONSTRUCTIONS

- Ice Class 1A Super
- Passenger and Crew Comfort

MAIN DIMENSIONS		CAPACITIES	
Loa	150.0 m	Passengers	800
Lwl	137.8 m	Lane metres	1500
Beam mld.	26.0 m	Cabins	68
Draught, Design	6.10 m	Speed	20 kn
Gross Tonnage, about	24 300	Public Decks	2 (Restaurants, Business Lounge,
Deadweight, Design abt.	3 500 t		Family Cafeteria, Shop, Conference)
Max. persons onboard (LSA)	1 000	Route:	Vasa - Umeå
,			Bothnian Corridor Service

References

- More than 30 Large Rauma Ferries since 1993
 - Front End Technology for Reliable Operation
- Supporting Special Vessels' Programme
 - Technology Development

2009

 Sensor and Data Processing Technique for Automation, Control and Operation

LBG/Electric + Batteries, 1A Super,

CONSTRUCTIONS

2022

LNG/Electric, DATA Platform

New Technology

5th Baltic Cruise Ferry for Tallink

2011 and 2012

World's First SRtP Ferry

Full Scale Sensor Technology

2014

World's First SOLAS 2009 + SA Ferry

2008

Technology – State of the Art

- How to Create Stability in a Rapid Development
 - Which is Accelerating
 - Boosted by the Aim to Create Autonomous Ships
- Digitalisation equal to "get the Wit out of the Iron"
 - Can we reach a Total Control
- Naval Architecture in the Driver's Seat
 - Only Way to Manage this Complex Whole
- Urgent Need for Simulation
 - Verification of the Data Platform
 - Independent for Ship's All Functionalities and Control
 - Required before Testing and Commissioning

Energy Sources & Fuel Alternatives:

- Battery storage
- LNG / LBG
- Biodiesel
- Fuel Cell
- Renewable energy sources
- Waste heat energy

Power Generation:

- Electrical propulsion
- Mechanical propulsion
- Shaft Generation PTO/PTI

Energy Efficiency:

- Optimized hull shape
- Minimize waste energy (heat & losses)
- Optimum machinery layout
- Total energy consumption
 - Manoeuvring, sailing,
 - Hotel & harbour stand-by

Integrated Automation & Navigation System:

- Power management system
- System complexity
- Operation optimisation
- Smart maintenance schedule

Integrated Automation and Navigation Systems

Automation System:

- Monitoring & Control Ship Equipment/Systems
- On-board Energy Optimisation
- Automatic Systems
- Autonomous Operations
- Automatic Reporting

Bridge:

- On-board Decision Centre
- Navigation & Piloting
- Situation Awareness
- Collision Avoidance
- Safety Centre

Radars & Sensors:

- Navigation Data
- Auto Pilot Dynamic Positioning
- E-Navigation
- Weather data Traffic data

Interface Testing and System Simulation

PROCESS

- Identify system interfaces
- Gather control software (or hardware controllers, interface units etc.) with open interfaces from suppliers
- Assemble complete control systems (e.g. propulsion) in a simulation environment in cooperation with system suppliers.
- Create models to simulate physical components (batteries, propulsors, etc.)

Introduction – Design Approach

TECHNOLOGY AND INNOVATION INTERACTION

- Mission based design task for innovative functionality solutions
- Solve Customers' problems and challenges
- Mathematic modelling of complex physical phenomena
- Decisions based on understanding, which comes only through experience
- Cutting-edge technology in combination with a broad polytechnic understanding

FUNCTIONALITY

Offshore Support
Environm. Observations
Oil/Chemical Recovery
Research Facilities
Logistics
Accommodation

SAFETY

Crew Safety
Special Purpose Ship
Personnel Safety
SRtP
Comfort
(Noise/Vibration)

Requirement Specification

RMC – Finland CONCEPT

PERFORMANCE

Ice Navigation/
Breaking – Assistance
Seakeeping
DP and Track-keeping
Environment Footprint
Energy Efficiency

Intelligent Shipbuilding Technology – Conclusions

- Increased automation in modern ships have created new weak points in the overall performance of the ships
 increased instability in integration due to software mal functions
- Autonomous ships' R&D-efforts will give a higher reliability of components and sub systems
 by extension an increased safety
- Mission based development of future ships will ensure deeper technology understanding
 theoretical knowledge supported with experience and deep understanding
- Talent and well educated people will contribute to keep continuity in the shipping value chain
 a guarantee for the sustainability education research development shipbuilding operation
- Legislation constraints and guidance integrates the Authorities into the business development

